Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth.
نویسندگان
چکیده
Self-assembled nanowires offer the prospect of accurate and scalable device engineering at an atomistic scale for applications in electronics, photonics and biology. However, deterministic nanowire growth and the control of dopant profiles and heterostructures are limited by an incomplete understanding of the role of commonly used catalysts and specifically of their interface dynamics. Although catalytic chemical vapour deposition of nanowires below the eutectic temperature has been demonstrated in many semiconductor-catalyst systems, growth from solid catalysts is still disputed and the overall mechanism is largely unresolved. Here, we present a video-rate environmental transmission electron microscopy study of Si nanowire formation from Pd silicide crystals under disilane exposure. A Si crystal nucleus forms by phase separation, as observed for the liquid Au-Si system, which we use as a comparative benchmark. The dominant coherent Pd silicide/Si growth interface subsequently advances by lateral propagation of ledges, driven by catalytic dissociation of disilane and coupled Pd and Si diffusion. Our results establish an atomistic framework for nanowire assembly from solid catalysts, relevant also to their contact formation.
منابع مشابه
Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires.
Nanowire growth in the standard <111> direction is assumed to occur at a planar catalyst-nanowire interface, but recent reports contradict this picture. Here we show that a nonplanar growth interface is, in fact, a general phenomenon. Both III-V and group IV nanowires show a distinct region at the trijunction with a different orientation whose size oscillates during growth, synchronized with st...
متن کاملAtomistics of vapour–liquid–solid nanowire growth
Vapour-liquid-solid route and its variants are routinely used for scalable synthesis of semiconducting nanowires, yet the fundamental growth processes remain unknown. Here we employ atomic-scale computations based on model potentials to study the stability and growth of gold-catalysed silicon nanowires. Equilibrium studies uncover segregation at the solid-like surface of the catalyst particle, ...
متن کاملGrowth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si„111... grown by selective area molecular beam epitaxy
We investigated the interwire distance dependence on the growth kinetics of vertical, high-yield InAs nanowire arrays on Si 111 grown by catalyst-free selective area molecular beam epitaxy MBE . Utilizing lithographically defined SiO2 nanomasks on Si 111 with regular hole patterns, catalyst-free and site-selective growth of vertically 111 -oriented InAs nanowires was achieved with very high yie...
متن کاملGaN nanowire and Ga2O3 nanowire and nanoribbon growth from ion implanted iron catalyst
The authors experimentally demonstrate a simple and efficient approach for nucleating the catalytic chemical vapor deposition CVD growth of GaN nanowires, Ga2O3 nanowires, and Ga2O3 nanoribbons by using ion implantation of Fe+ into thermally grown SiO2 layers and subsequent annealing to form the catalyst nanoparticles. This work shows that ion implantation can be used as a versatile method to c...
متن کاملGrowth behaviors of ultrathin ZnSe nanowires by Au-catalyzed molecular-beam epitaxy
Ultrathin ZnSe nanowires grown by Au-catalyzed molecular-beam epitaxy show an interesting growth behavior of diameter-dependence of growth rates. The smaller the nanowire diameter, the faster is its growth rate. This growth behavior is totally different from that of the nanowires with diameters greater than 60 nm and can not be interpreted by the classical theories of the vapor-liquid-solid mec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature materials
دوره 7 5 شماره
صفحات -
تاریخ انتشار 2008